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Abslracl. The ~olution of the mean field equations of the periodic Anderson model are studied 
in detail in order to compute the tempemure dependence of the thermodynamic quantities for 
heavy-fermion compounds. 

The m m  field solution is valid only for temperatures T < T'. In the impurity w e  T' - TK 
but for the lattice we find T' >> TK because of lhe shift of the chemical potential which occurs 
as ny is changed. We show that it is useful to introduce a funher characteristic temperatwe. r. 
such thal k ~ r  z? ( V z ) z / W 3  where ( V 2 ) ' / 2  is the avenge hybridization over the Fermi surface 
and W is the band width. 

We show that a l i n w  approximation may be used for the full Fermi function which allows 
mean field theory to be evaluated easily. The susceptibility is evaluated in full mean field theory 
and using the linear approximation. The agreement is good. 

At high temperatures T > TK the mean field predicts quasi-classical behaviour ,y = C/T+B. 
This arises from B non-interacting Fermi gas because the band energies are functions of 
temperature. This result can be readily understood using the malytic approach. 

1. Introduction 

At high temperatures, heavy-fermion compounds behave as if they contain hee (classical) 
spins. The susceptibility follows a Curie-Weiss law. As the temperature is lowered the 
electron degrees of freedom become incorporated into the Fermi liquid giving rise to the 
enhanced specific heat and enhanced Pauli susceptibility. The thermodynamic behaviour 
of heavy-fermion compounds bears some resemblance to the behaviour of dilute Kondo 
impurities. The transport properties of the two systems are markedly different at low 
temperatures because of the coherence in the periodic Anderson lattice. For a review see 
[I]. 

In this paper we concentrate on the thermodynamic properties and evaluate these as 
a function of temperature. We use the slave-boson method which has been successfully 
used to describe heavy-fermion behaviour at zero or low temperature [2-5]. The lowest 
approximation to this is the mean field theory. At finite temperature the mean field theory 
breaks down for T Y TK for impurity systems [2] and in lattices if the chemical potential is 
held constant [ 6 ] .  Evans et a1 [7,8] found numerically that allowing the chemical potential 
to change gave a negative feedback effect delaying the onset of integral valence and that 
the temperature T* at which nr = 1 in mean field theory can be very much higher than 
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the effective Kondo temperature, T,, which characterizes the low-temperature behaviour 
of a lattice problem [9]. This paper explores this result in more detail. It is important to 
understand the temperature dependence of the mean field solutions before considering the 
interactions. 

For the impurity problem the transition predicted by mean field theory is certainly 
spurious. It is not clear if there should be a transition in an Anderson lattice as a function 
of temperature. The results of this paper are valid in the regime where nf < 1 and mean 
field theory is sensible. The mean field approximation leads to single quasiparticle states 
satisfying Bloch's theorem-this is usually a fermi liquid except when the degeneracy of the 
f level is equal to the number of electrons when it may be an insulator. Indeed the properties 
of the Anderson lattice are mapped on to a non-interacting Fermi gas but with an unusual 
density of states with an unusual temperature dependence. We show in this paper that this 
Fermi gas state may exhibit thermodynamic behaviour reminiscent of classical spins. Thus 
the existence of a susceptibility varying as C / ( T  + 0) is not to be taken as evidence that 
there has been a nansition to a classical state. 

The mean field solution predicLs a hybridization gap which is observed at low 
temperatures [IO]. At T* the gap vanishes. Hence, a measurement of the existence of 
a gap in the density of states at a temperature where the susceptibility is Curie-Weiss-like 
would confirm the prediction that the mean field theory does account for the 'classical 
regime' satisfactorily. 

In this paper we obtain the numerical solutions of the mean field equations. We also 
set up a linear approximation [ 111 to the Fermi functions which allows us to obtain analytic 
solutions to the mean field equations and hence get a deeper understanding of the physics. 
We check the accuracy of this approximation in this paper by computing the thermodynamic 
quantities for both the full mean field theory and the linear approximation. 

G A Gekring et a1 

2. Mean field solution of the periodic Anderson model 

In this section we derive the mean field solutions to the periodic Anderson lattice and 
investigate the conditions for them to be valid. 

Our starting point is the Anderson lattice Hamiltonian in which we consider 
hybridization of the local N-fold degenerate f-electron states with N conduction bands 
in the usual way but also includes other conduction bands which d o  not hybridize with 
the f level. This is done in order to consider the change in the chemical potential for a 
concentrated lattice system and for when the rare-earth sites are diluted. (The extra s bands 
act as a reservoir for the electrons which move out of the localized f states). 

The N-fold degeneracy for the f electrons is equal to 2J + 1. The conduction electron 
states are expanded in spherical harmonics so the hybridization is diagonal in m. The 
angular momentum is not conserved as the conduction electrons propagate and hence the 
conduction electron energy has been approximated in the Hamiltonian which is given below 
by considering it to be also N-fold degenerate. This approximation is frequently used 
because it allows for an N-' expansion. A more realistic model has the N-fold-degenerate 
f state hybridizing with a conduction band which is only doubly (spin) degenerate [IZ]. This 
leaves the structure of the theory unchanged [13] but gives rise to a direction-dependent 
hybridization potential VL and a direction-dependent hybridization gap. 

N N 
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Here &km are the band energies for the hybridizing conduction electrons, EO, is the bare 
f-electron energy-it is assumed to be independent of m except when a magnetic field is 
acting, Vkm is the hybridization term, U is the on-site Coulomb repulsion and the energies 
of the non-hybridizing bands are ek,i .  

The large local Coulomb repulsion can he eliminated by introducing the slave-boson 
technique in which the f-electron occupation is restricted to be less than or equal to one by 
including the following constraint in the Lagrangian: 

nir + b'bi = 1. 

(b:) = (bi) = (all i), (2.3) 

(2.2) 

The mean field approximation consists in assuming that 

This results in the following mean field Hamiltonian: 

N N N 

= EkCkmCkm + + C C & f m f ; + , f i m + C C ( ~ k , m C ~ m f k m + H C )  
k m=l L m=I k m=I 

Here em is the renormalized f energy and !&,,, = V k m G  is the renormalized 
hybridization. This may be diagonalized to give hybridized bands with energies 

E,.(k) = 4 ( & k  +srm f JLGFzq (2.5) 

In the absence of a magnetic field Efm is independent of m and we can define an effective 
hybridization 

where the average is taken over the Fermi surface. The values of E f ,  nr and the chemical 
potential, p, are given by the following equations (the conduction electron density of states 
has been taken as a constant po (PO = lJNW), and W is an effective conduction electron 
band width): 

nf = m o J _ ,  (A+(w(E-(w - + ~ - ( k ) . m + ( k )  - p ) ) d ~ k  (2.6) 
( N - 1 ) W  
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P stands for the principal part of the integral in equation (2.7), f (E - f i )  is the Fermi 
function and A* are the conduction electron weights in the two hybridized bands: 

G A Gehring et al 

Equations (2.6142.8) are three coupled integral equations for nf, Er and p .  Using the 
relations Ai = aEi(lc)/ask and A+@) + A-@) = 1 equation (2.6) and equation (2.8) 
may be integrated exactly to obtain an equation for p which is valid for all temperature 
such that nf 6 1: 

2 - nr + s  = p-'Npo 

1 [1 +exp(-B(E-(-W) - fi))IU + exp(-p(E+(-W) - fiN1 
[ I +  exp(-f?(E-(N - l)W - fi))][l+exp(-p(E+(N - l)W - /A))] 

(2.10) 

where 

E i ( X )  = ;(Er+ X + J(X - + 4v2) 
and p = 1 / T  (we work in energy units so that kg = 1). 

us to simplify the logarithm in equation (2.8) to obtain 

M T )  = -U - n d W .  

The band width W is very large, so terms of order e-WIT are negligible. This allows 

(2.11) 

The constraint (2.2) requires 1 - nf > 0 but the mean field equations have solutions which 
may be analytically continued to nf > I-these are physically meaningless. We now derive 
a temperature T" which is at the limit of validity of the theory T < T* for nf < 1. 
The mean field equations are solved for nr 4 1. It is important to note that this implies 

= V f i  -F 0 but this is not the unhybridized~system~for which V = 0. Since 
p = 0 at nr = 1 this condition is in agreement with Harigaya [5] who assumed p = 0 at 
all temperatures as is valid for the impurity problem. 

W 
I + s  

Equation (2.8) can be evaluated immediately to give 

This is as one would expect for nf = 1 in an N-fold-degenerate level at E ; ,  
Another relation between E; and T* is found from equation (2.7): 

(2.12) 

(2.13) 

This leads to the following equation For T* in terms of the bare Anderson lattice parameters 
(N, WE0 and V) and E;, which is found from equation (2.12) to be E: = T*ln(N - l), as 
found by Harigaya [6]: 

x TO exp ( T * W W ?  - I ) )  I (2.14) 
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where j ( N )  is defined by 

and 

To = W exp( Eo W/ V2) (2.15) 

is the characteristic energy scale; all the temperatures we shall derive will be expressed in 
terms of To. 

We are interested in the wide-band limit in which W is the largest energy in the problem, 
so .q/W Q 1, and equation (2.10) simplifies to: 

(2.16) 

The numerical factors are of the order of unity. In the Kondo regime T' W In(N - l ) /Vz 
is small and the exponential factor in (2.16) may be put equal to unity. 

For N = 2 we confirm Harigaya's result: 

T * =  1.134To. (2.17) 

For larger N the integral for j ( N )  cannot be done analytically and numerical calculations 
show that T* is a decreasing function of N. 

Thus we find that for T < T* the mean field solution is well behaved. The value of 
T' is similar to To-the Kondo temperature for an impurity with the bare energy EO. 

The entropy can also be obtained for T = T? 

(2.18) 

This is the entropy of a system of N independent Fermion states [2,5,7] each with 
probability of occupation of 1 / N .  The entropy of a single occupied localized state of 
degeneracy N is the classical value Scjassicd = InN. The entropy given by (2.18) is higher 
than the classical value because of the additional fluctuation in the values of nt allowed by 
the mean field theory [5]. However, (2.18) does approach the classical value In N for large 
N ,  as expected. 

3. Solution a t  IOW temperatures 

We investigate the lattice problem at low temperatures in order to calculate the appropriate 
low-temperature energy scale, TK, for the lattice. This will be compared with the Kondo 
temperature for an impurity Ti,  and the limiting temperature T'. 

At T = 0 equations (2.6) and (2.7) simplify because the Fermi functions are unity 
for E-(&) < p and zero for E-(EI)  > p and all E+&). This leads to the following 
equations: 
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and 
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(3.2) 

The Kondo temperature for the impurity Tk, for which p = 0 is very close to TO (equation 
(2.15)) because ToW/V2 << 1 

-s:w/v1 TK = E: - p = Toe 

(3.3) 

However, for the lattice problem, equations (3.1) and (3.2) must be solved together with 
equation (2.1 1); this leads to 

i - T e-TLW/V’ T K -  o 

(3.4) 

The coefficient in the exponential in equation (3.4) is much larger than the one in equation 
(3.3). We define a temperature r 

lattice 
1 w3 

T v2 
(3.5) 

= I/NV2po = W / V 2  impurity. (3.6) 
1 w  _ = _  

Hence equation (3.4) becomes 

TK = Toe-TKJr. (3.7) 

The lattice effective Kondo temperature, TK, is reduced strongly if 7 << To. In heavy- 
fermion compounds we usually have W = 10 eV and V N 1 eV which leads to values of 
r s 1 I K for the lattice (s = 0) and c N 1100 K for an impurity. In figure 1 we show a 
plot of TK/To as a function of Tols. For example the parameters taken by Evans er al [7] 
correspond to s = 0, TO ‘2 782 K, r = 11 K and TK 38 K. It is straightforward to show 
that equation (3.7) implies that r < TK c TO if r < To. 

For the lattice 7 c TO leading to TK << To whereas for the impurity case T >> TO leading 
to TK ‘2 TO (as given in equation (3.3)). The reduction of r arises because of the shift of 
the chemical potential for the lattice problem. 

It has recently been found [I I] that the characteristic temperature T is also important in 
determining the shape of the magnetic susceptibility. 

We note that in section 2 we found that T* ’2 To thus we find that for Tolr << 1 that 
TK - To - T’ but that for the lattice problem for which TO/T 2 1 then TK (< T*. This 
means that the mean field equations are valid for temperatures considerably greater than TK 
(the low-temperature Kondo scale). 

4. The linear approximation method 

While the mean field (MF) equations can be solved analytically at zero temperature, it 
is difficult to obtain temperature dependences at finite temperatures. One can find low- 
temperature behaviour of the mean field equations using the Sommerfield expansion for the 
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Figure 1. A plot of the solution of equation (3.7). The Imice Kondo rempenture TK as divided 
by Z, (the impurity Kondo temperature) as function of Z)Jr  where T is defined by equation 
(3.5). 

Fermi function, which gives typical Fermi liquid TZ behaviour near zero temperature. By 
solving the iw equations numerically, Evans et al [7] showed that the MF gives a good 
description for the specific heat and magnetic susceptibility over the whole temperature 
regime 0 T < T*. It is desirable to find how this agreement arises analytically. We are 
able to get analytic expressions for iw equations by employing a simple approximation for 
the Fenni function. Our strategy is to replace the smeared part of the Fermi function by 
a straight line which enables us to carry out all integrals involved exactly over the whole 
temperature regime. We shall see this approximation preserves the essential physics of the 
system and leads to the correct qualitative behaviour over the temperature where the iw 
approximation is valid. 

We adopt the simplest linear approximation to the Fermi function f (E): 

1 for E - ~r- 6 -A 

fL(&) = [A - ( E  - @)]/?.A for -A < E  - @ < A (4.1) I o  f o r & - - p > A .  

Here A = 4T In 2 is a measure of the temperature and is determined by the condition that 
the number of excited quasiparticles is the same for the linear and full Fermi functions 

J P  J P  
(4.2) 
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Depending on the size of A, we have to consider three different regimes which are indicated 
schematically in figure 2. In regime I, p + A lies in the lower band. This corresponds to 
the low-temperature regime in which only part of the lower band contributes. Regime II is 
the intermediate-temperature case in which p + A lies in the gap. In this case the whole 
of the lower band contributes. Finally when p + A is big enough to cross into the upper 
band (regime ID), we have contributions from the upper band as well as the lower band. 
We evaluate the MF solutions within this approximation and assume that W is large. 

G A Gehring et a1 

P 
Regime I A c & - 

( N  - 1)W 

nr = Npo- 9 2  In [e] 
2A 

W 
1 + s  

p=- ( I -nr )  

Here & = Er - p is the Kondo energy. 

(4.3) 

(4.4) 

111 

Figure 2. A diagram illustrating the values of A for regions I, 11. I11 

For small A it is easy to show that 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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Here n:, E: and IF are the zero-temperature solutions obtained in section 3. We see that 
although &f falls with increasing temperature the effective Kondo energy .?f is rising. 

We also evaluate. nt and Et for the other regimes: 

v 2  
< A < $+ w 8 2  

RegimeU if- 
(N - 1)W 

(4.9) 

(4.10) 

Regime IU A > if + F2/ W 

A - If 
A - Bf 

nf = Npo - I 2A 
(4.11) 

[ [ I f y A ] + y I n [ ( N - l ) -  A - If -- 
E f -  Eo = NpoV2 1 + I n  - :::I :i(N-NI)W} 

(4.12) 

One thing to be noted here is that the average valence nf approaches its saturated value as 
nf = (N/2)(1 -If/A).  The numerical results demonstrate that the linear approximation has 
preserved important physics and is consistent with the solutions of the full MF equations. In 
figures 3, 4 and 5 we plot the temperature dependence of &fr nf and If. The full MF theory 
is shown by the solid line and the linear approximations by the broken line. The curves 
were obtained for the following values of the input parameters: V = 1 eV, EO = -0.5 eV, 
W = 10 eV, N = 6 and s = 0. The temperatures corresponding to the transitions between 
regions I and II and regions I1 and III were 18.2 K and 48.7 K respectively for these input 
parameters. We see that the curves for Ef. nr and If go smoothly through these values. The 
agreement is exact at T = 0 and good until regime III is reached. In the next section we 
see that the interesting physics is in regions I and It. 

At high temperatures where the f level is weakly hybridizing, one would expect a 
localized approximation to be valied for nf: 

This may be solved for If: 

N - nf .Zf= Tln- N T In(N - 1) N # 2. 
nf 

(4.13) 

(4.14) 

The agreement of the equation (4.14) with the MF solutions is very good at high temperatures; 
for T 2 300 K the error is less than 1.5%. 

The result for N = 2 is different because If + 0 as T + T" and hence If has a 
maximum as shown in figure 5(b). 
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0 20 40 60 80 100 I20 

T(K) 
Figure 3. The effective f-level energy Vmns rempcmNre for N = 6.  The solid line indicalcs 
full MF solutions and the broken one shows the linear approximadon. The interesting physics in 
this maferial occurs for T 5 30 K, where the agreement is quite gwd. 

Equation (4.14) would give the following result as nf + 1: 

&E T(l  -n& (4.15) 
This is confirmed by solving equation (4.1 1) in the limit nf + 1. The different behaviour 
for & at high temperatures for N = 2 compared with N # 2 does not seem to show up in 
the thermodynamics. 

We now want to estimate Tf at which nr -+ 1 and MF theory breaks down. In this limit 
A' = 4Tf In 2 is given by 

(4.16) 

For the N = 2 case we get T t  = (e/4in2)To %Z 0.98To. This is compared to the result 
from full Mp theory T* = 1.13To. Thus we see that the linear approximation describes the 
physics of the system reasonably well for the high-temperature regimes. 

The agreement at T = 0 is exact and is very good in the temperature range where 
interesting phenomena occur. 

5. Applications of the Linear approximation 

In this section we use the linear approximation to calculate the magnetic susceptibility and 
the heat capacity and compare the results with the full solution. A brief discussion of 
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" f  

O 985 I 

0 965 I 
0 20 40 60 80 100 120 

T(K) 
Figure 4. The number of f elecuons per Site versus tempemure. The solid and blokm Lines have 
the same meming as in figure 3. The interesting physics in hihis materid occurs for T 5 30 K. 
where the agreement is quite good. 

the magnetic susceptibility has been given before [ I l l .  In a magnetic field EO, becomes 
EO + gpBmB and the susceptibility is found from 

x = - ( g d ( a Z F / a H Z ) H _ o .  (5.1) 

Using the linear approximation we find the following analytical expressions for x: 
e'/($ - A') regime I (5.2) 

( N  - l)W - - regime II (5.3) 

regime III. (5.4) 

We plot x as a function of T in figure 6. As can be seen from the figure 6, x increases from 
the zero-temperature value ?'/E: quadratically in A in regime I and has a maximum and 
crosses over to a Curie-Weiss regime in regime III. The solid line is the full MF result and 
the broken line is the linear approximation given by equations (5.2)-(5.4); the crossover 
occurs below TK because A is related to T by T N 0.368.  This is consistent with the 
numerical results of Evans et al [7]. We note that the boundary of regions I and II is at 
18.2 K and II and III is at 48.7 K and thus the interesting behaviour is within regions I and 
U. 

E f f A  

NW/2A - c2/(A2 - 2.;) 
ez 1 J 

x = p o ( g m ) 2  m2 I [ 
m=-J 
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r; (K) 

0 200 400 GOO 800 1000 

T W )  
Figure 5. The effective f-level energy measured relative to the Fermi energy as I function of 
temperamre. ( a )  N = 6. The interesting physics in this materid occurs for T 5 30 K, where 
the agreement is quite good. (b)  N = 2. me solid md broken lines have the same meaning as 
in figure 3. 
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1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 
0 20 40 60 BO 100 120 

T W )  
Figure 6. The mgmtic susceptibility calculated as a function of temperature for both the full 
MF theoky (solid line) and linear approximation (broken line). Note that for the given choice of 
panmeters the boundary of regions I and I1 is at T = 18.2 K and for regions DI and 111 it is at 
48.7 K. 

At low temperatures the MF solutions obtained here always exhibit a maximum and 
therefore a fit to the experiments can be obtained only for systems which show the maximum 
of the susceptibility at finite temperature. A monotonically decreasing x is obtained if 
anisotropic hybridization is included as is the case where an N-fold-degenerate f level 
hybridizes with a doubly degenerate conduction band [12]. The Curielike behaviour at 
high temperatures is interesting because in the MF approximation the full periodic Anderson 
lattice is mapped onto a non-interacting Fermi gas. It arises in the theory as formulated here 
because of the form of the density of states and its unusual temperature dependence. It is an 
indication that the MF theory is giving a good account of the behaviour in the temperature 
regime T, e T e T*, which for ow parameters is 38 K 5 T 5 780 K, and that the 
observation of a classical Curie-Weiss susceptibility should not be taken as proof that the 
f electron is no longer part of the Fermi liquid. 

We can use the simple approximation appropriate for a localized level to estimate x: 
Ef/T E ln(N - 1). (5.5) 

It is straightforward to obtain 
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We examine the Curie constant which may be obtained from the localized level 
approximation equation (5.6) and regime III result given by equation (5.4). The classical 
result is 

(5.7) 

Both equations (5.6) and (5.4) give a Curie constant of this form (when we use N = 2 J +  1) 
but with correction factors. These are (N - 1)/N and Nl(8In2) respectively. We see that 
the linear theory is becoming relatively inaccurate at high temperatures. It is not surprising 
that the localized level approximation gives a good result for the Curie constant. 

The high-temperature expression for x is not exactly of a Curie-Weiss form but it does 
tend to 1 / T  at high temperatures from below. 

Plots of x- '  in the high-temperature regime for the full and linear theory give a good 
fit to a straight line and the same Curie-Weiss constant of 0 = -20 K over the temperature 
range around 80 K. In fact the plot is not linear and gives a value of B closer to -5 K if 
evaluated between 40 and 60 K. This is what one would deduce from equation (5.4): 

B -TK/(ZN In2) - -5 K. 

The linear theory may also be used to obtain the electronic specific heat, but it is not helpful 
to do so because the analytic expressions for the internal energy are very cumbersome to 
differentiate. In figure 7 we show the full MF specific heat. At high temperatures we may 
use the approximation of sharp maximum in the density of states giving an effective energy, 
Er. This leads to the following expression for the internal energy: 

U = Ucend e1 - EO(1 - nf) (5.8) 

where EO is the bare f level. The contributions to the specific heat divided by T from this 
result is shown in figure 7. (This would be difficult to observe experimentally because of 
the contribution from phonons.) 

6. Discussion 

In this paper we have shown how the MF theory of the periodic Anderson model may be 
used to obtain a good understanding of heavy-fermion materials over the temperature range 
over which their properties change from that characteristic of localized classical spins to 
that of a Fermi liquid. 

We found a striking difference between the temperature dependence of the impurity and 
lattice problems in this treatment. For an impurity the temperature at which the MF theory 
fails T* is very close to the Kondo temperature defined at low temperatures, TA. For a lattice 
this is not m e ;  the effective Kondo temperature Er is much less than T". Physically this 
means that the Kondo resonance becomes less well defined for T 2 TK but that the sharp 
features in the density of states for the lattice problem persist up to T E T'. Experimentally 
the thermodynamics of heavy-fermion compounds is similar to that of Kondo impurities- 
this is because the thermodynamics is determined by an integral of the density of states 
with the smeared Fermi function. 

We can understand this as follows. In both the impurity and lattice problem we can 
define a temperature, TO = Wefi"/Npv2, which is defined in terms of the bare parameters 
of the Anderson Hamiltonian. The high-temperature Limit T' is of the order of To. The 
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0 20 40 60 80 100 120 

T(K) 
Figure 7. "he Mf theory far the specific heat divided by T 

difference between the lattice and the impurity cases arises at low temperatures because the 
energy of the localized level should be measured relative to the chemical potential. The 
chemical potential vanishes at T* and is always zero for the impurity problem. For the 
lattice problem fl  rises at low temperature as nf falls. Equation (3.2) for TK may be written 
in a way which makes this more transparent: 

-E, W l  v~e(Eo--p) W l  v2 TK = 2.f = &; -/I = We 

In all cases the factor e-ErWIV2 is close to unity. In the lattice problem the increase of 
fl  as nf drops below unity causes TK to be far below TO as discussed in section 3. The 
linear approximations to the Fermi function which are used here are shown to give a very 
easy way of obtaining the interesting thermodynamic quantities for heavy-fermion materials. 
This also leads to an increased understanding. The peaks in x and y may be understood 
in terms of the contrasting behaviour for regions I and ID. Furthermore the appearance of 
the classical behaviour in region ID may be related to the particular form of the density of 
states. We showed that the approximate constancy of &/T as temperature is varied leads 
to a Curie law and a constant specific heat. 

We found that the magnitude of the temperature at which the true classical behaviour 
appears to set in depends on a temperature T as well as the Kondo temperature for 
an impurity, TO. We also found that for an impurity the value of the effective Kondo 
temperature & = et - /I falls with increasing temperature; however, for the lattice & rises 
with temperature (for N = 2 it passes through a maximum). 
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We have shown that the high-temperature behaviour may be understood in te rm of a 
Fermi liquid at elevated temperature. 
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